Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Chem Lab Med ; 62(1): 128-137, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-37440753

RESUMEN

OBJECTIVES: Since the prevalence of hypophosphatasia (HPP), a rare genetic disease, seems to be underestimated in clinical practice, in this study, a new diagnostic algorithm to identify missed cases of HPP was developed and implemented. METHODS: Analytical determinations recorded in the Clinical Analysis Unit of the Hospital Universitario Clínico San Cecilio in the period June 2018 - December 2020 were reviewed. A new clinical algorithm to detect HPP-misdiagnosed cases was used including the following steps: confirmation of persistent hypophosphatasemia, exclusion of secondary causes of hypophosphatasemia, determination of serum pyridoxal-5'-phosphate (PLP) and genetic study of ALPL gene. RESULTS: Twenty-four subjects were selected to participate in the study and genetic testing was carried out in 20 of them following clinical algorithm criteria. Eighty percent of patients was misdiagnosed with HPP following the current standard clinical practice. Extrapolating these results to the current Spanish population means that there could be up to 27,177 cases of undiagnosed HPP in Spain. In addition, we found a substantial proportion of HPP patients affected by other comorbidities, such as autoimmune diseases (∼40 %). CONCLUSIONS: This new algorithm was effective in detecting previously undiagnosed cases of HPP, which appears to be twice as prevalent as previously estimated for the European population. In the near future, our algorithm could be globally applied routinely in clinical practice to minimize the underdiagnosis of HPP. Additionally, some relevant findings, such as the high prevalence of autoimmune diseases in HPP-affected patients, should be investigated to better characterize this disorder.


Asunto(s)
Enfermedades Autoinmunes , Hipofosfatasia , Humanos , Hipofosfatasia/diagnóstico , Hipofosfatasia/epidemiología , Hipofosfatasia/complicaciones , Fosfatasa Alcalina , Pruebas Genéticas , Mutación
2.
Cardiovasc Diabetol ; 22(1): 301, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919715

RESUMEN

BACKGROUND: Sclerostin is an inhibitor of the Wnt/b-catenin pathway, which regulates bone formation, and can be expressed in vascular smooth muscle cells (VSMCs). Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease (CVD) and increased serum and tissue expression of sclerostin. However, whether the role of sclerostin is detrimental or protective in the development of CVD is unknown. Therefore, our aims are to determine the level of sclerostin in T2D patients with/without CVD and in controls, both at serum and vascular tissue, and to analyze the role of sclerostin in VSMCs under calcified environments. METHODS: Cross-sectional study including 121 controls and 139 T2D patients with/without CVD (48/91). Sclerostin levels in serum were determined by ELISA, and sclerostin expression was analyzed by RT-qPCR and immunohistochemistry in calcified and non-calcified artery of lower limb from T2D patients (n = 7) and controls (n = 3). In vitro experiments were performed in VSMCs (mock and sclerostin overexpression) under calcifying conditions analyzing the sclerostin function by determination of calcium and phosphate concentrations, and quantification of calcium deposits by Alizarin Red. Proliferation and apoptosis were analyzed by MTT assay and flow cytometry, respectively. The regulation of the expression of genes involved in bone metabolism was determined by RT-qPCR. RESULTS: A significant increase in serum sclerostin levels in T2D patients with CVD compared to T2D patients without CVD and controls (p < 0.001) was observed. Moreover, higher circulating sclerostin levels were independently associated with CVD in T2D patients. Increased sclerostin expression was observed in calcified arteries of T2D patients compared to non-calcified arteries of controls (p = 0.003). In vitro experiments using VSMCs under calcified conditions, revealed that sclerostin overexpression reduced intracellular calcium (p = 0.001), calcium deposits (p < 0.001), cell proliferation (p < 0.001) and promoted cell survival (p = 0.015). Furthermore, sclerostin overexpression exhibited up-regulation of ALPL (p = 0.009), RUNX2 (p = 0.001) and COX2 (p = 0.003) and down-regulation of inflammatory genes, such as, IL1ß (p = 0.005), IL6 (p = 0.001) and IL8 (p = 0.003). CONCLUSIONS: Sclerostin could play a protective role in the development of atherosclerosis in T2D patients by reducing calcium deposits, decreasing proliferation and inflammation, and promoting cell survival in VSMCs under calcifying conditions. Therefore, considering the bone-vascular axis, treatment with anti-sclerostin for bone disease should be used with caution.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Calcificación Vascular , Humanos , Músculo Liso Vascular/metabolismo , Calcio/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Estudios Transversales , Aterosclerosis/metabolismo , Apoptosis , Proliferación Celular , Miocitos del Músculo Liso/metabolismo , Calcificación Vascular/genética , Células Cultivadas
3.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835545

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) seems to have some molecular links with atherosclerosis (ATH); however, the molecular pathways which connect both pathologies remain unexplored to date. The identification of common factors is of great interest to explore some therapeutic strategies to improve the outcomes for those affected patients. Differentially expressed genes (DEGs) for NAFLD and ATH were extracted from the GSE89632 and GSE100927 datasets, and common up- and downregulated DEGs were identified. Subsequently, a protein-protein interaction (PPI) network based on the common DEGs was performed. Functional modules were identified, and the hub genes were extracted. Then, a Gene Ontology (GO) and pathway analysis of common DEGs was performed. DEGs analysis in NAFLD and ATH showed 21 genes that were regulated similarly in both pathologies. The common DEGs with high centrality scores were ADAMTS1 and CEBPA which appeared to be down- and up-regulated in both disorders, respectively. For the analysis of functional modules, two modules were identified. The first one was oriented to post-translational protein modification, where ADAMTS1 and ADAMTS4 were identified, and the second one mainly related to the immune response, where CSF3 was identified. These factors could be key proteins with an important role in the NAFLD/ATH axis.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Aterosclerosis/genética , Biología Computacional , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Enfermedad del Hígado Graso no Alcohólico/genética , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...